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Abstract: The studies of forest ecosystems from remotely-sensed data are of great interest to
researchers because of ecosystem services provided by this ecosystem, including protection of
soils and vegetation, climate stabilization, and regulation of the hydrological cycle. In this context,
our study focused on the use of a spectral angle mapper (SAM) classification method for mapping
species in the Azrou Forest, Central Middle Atlas, Morocco. A Sentinel-2A image combined with
ground reference data were used in this research. Four classes (holm oak, cedar forest, bare soil, and
others-unclassified) were selected; they represent, respectively, 27, 11, 24, and 38% of the study area.
The overall accuracy of classification was estimated to be around 99.72%. This work explored the
potential of the SAM classification combined with Sentinel-2A data for mapping land cover in the
Azrou Forest ecosystem.
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1. Introduction

Forests play a range of services that are crucial for humans and different kinds of fauna. They can
provide food and fiber; regulate the hydrological cycle; protect watersheds and their vegetation, water
flows, and several types of ecological services [1–5]. However, natural equilibria in ecosystem services
provided by our forests have been dramatically reduced because of natural and human-induced
causes [6].

The Food and Agriculture Organization for United Nations [7] mentions that global forest area
fell by 129 million hectares (3.1%) in the period 1990–2015, to just under 4 billion hectares.

Forest cover since the 1950s in the Mediterranean area has been lost at a rate of about 30% [8].
However, according to Hansen et al. [9] the dry tropical biome represented 20% of the total forest
cover in 2000, and were being lost at rate of 2.9% between 2000 and 2005. In order to protect and to use
those services, the National Forest Inventories have been used and applied in many countries in the
world. Despite the role of National Forest Inventories for obtaining information on forest ecosystems,
previous studies have shown that they are costly and time-consuming [10].

To overcome this, several authors have made serious efforts to seek and develop new approaches
for the identification of degraded areas in forests [11,12], to map and classify different forest species
through the use of satellite imagery [13–15].
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Several classification methods have been applied in land cover mapping, commonly distinguished
in a first approach: those focused on artificial intelligence, such as artificial neural networks
(ANN) [16] and those oriented towards supervised or unsupervised algorithms, including maximum
likelihood (ML) classification [17], decision tree (DT) classifier [18–20], the k-nearest neighbors (K-NN)
method [21], and support vector machine (SVM) [22–24]. Among those algorithms, our approach was
based on the spectral angle mapper (SAM) because of its quickness and ease of use, independence
from illumination variations, as well as its use in several studies [25]. In addition, according to
Bonn [15], mapping and monitoring species in forest ecosystems of the Middle Atlas Mountains of
Morocco is complicated due to considerable physical and environmental variability; both at spatial
and spectral scales. This variability limits the use of the conventional methods and spectral indices for
this task. To better overcome these challenges, they have used ASTER (Advanced Spaceborne Thermal
Emission and Reflection Radiometer) images to compare the performances of linear spectral mixture
analysis (LSMA) and SAM for mapping and discrimination of species in this forest ecosystem. Hence,
Sentinel-2A with high spatial, spectral, and temporal resolution combined with SAM can be used to
improve discrimination of species in such areas of study.

Several authors employed different remotely-sensed data and different algorithms to map forest
types in non-tropical areas. For instance, Shen et al. [26] investigated and demonstrated the mapping
potential of the forest ecosystem at the tree species level from high spatial resolution hyperspectral
images (Airborne Imaging Spectrometer for Applications—AISA), in Hachioji, Japan. The mapping
performance of eight conventional classification methods were tested—including SAM, which achieved
the best result. Additionally, Kachmar et al. [27] used Landsat 5 TM data, in order to classify dominant
forest cover types in the Naeba Mountains of Japan considering the SAM classifier. Silva [28] used a
dataset composed by a several Landsat-5 TM and Rapid-Eye images from the Paraíba Valley (Brazil).
They used training data from 2011 to build a spectral reference library considering the Landsat-5 TM
spectral signatures for each land use/land cover LULC (eight classes were considered). The spectral
library was then used to classify the time series of Landsat-5 TM images (years 1985, 1994, 1995, 2005,
and 2011) with SAM. Troyer et al. [29] aimed to create a higher spatial resolution LULC dataset for
the entire Little Miami River watershed in Southeast Ohio for a number of studies being conducted
by the U.S. Environmental Protection Agency (U.S. EPA). The LULC classification was derived from
82 flight lines of Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery. They used
several classification algorithms, including maximum likelihood classification (MLC), SAM, and the
classification and regression tree (CART), however, no single algorithm alone proved to be capable of
successfully classifying the hyperspectral data. Nevertheless, SAM produced the best results. However,
in the works previously cited, none of them used Sentinel-2A data combined with SAM. SAM treats
the spectra as vectors in a space with dimensionality equal to the number of bands used. Using the
SAM classifier and spectrally-suitable forest training areas, forest cover types are classified and their
accuracies are related to topographic correction methods, applied and localized land use, and land
cover change occurring in the study area [27]. Moreover, SAM’s advantage over more ‘traditional’
classifiers is its relative insensitivity to illumination and albedo effects inherent with remotely-sensed
imagery [30].

Until recently, the availability of Sentinel-2A as an instrument with high spatial, spectral, and
temporal resolution has opened up other opportunities for this aim. This is the novelty presented
in this work, the combination of Sentinel-2A data with SAM in order to map forest species in a
non-tropical area.

The aim of this work was to map and classify the dominant forest species in the Azrou Forest in
the Central Middle Atlas region of Morocco by using high spatial resolution satellite images (Sentinel
-2A), based on the spectral angle mapping (SAM) supervised classification method. In this context, our
methodology represents a powerful step because the use of SAM for this focus with Sentinel-2A has
not yet been fully explored and has not been tested, until now, in this study area. Furthermore, this
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approach has valuable implications for forest cover mapping in other areas, specifically where field
surveys and field data are costly and time consuming.

2. Materials and Methods

2.1. Study Area

The study area is located in the Central Middle Atlas of Morocco (Figure 1), between 5◦34′1.415”
W/5◦52′5.464” W and 37◦1′25.700” N/36◦59′27.554” N, and it covers approximately 24,588 ha.
The climate is typically Mediterranean with annual rainfall varying from 563 mm to 1122 mm, while
the maximum temperature is around 30.3 ◦C at Ifrane Meteorological Station and 43 ◦C at Tagounit
Meteorological Station. July and August are the driest months in the study area.

As a result of forest management plan, the species composition of the area is highly heterogeneous,
mainly covered by evergreen cedar (Cedrus atlantica); pure stands or mixed with evergreen stands of
(holm) oak (Quercus ilex L, and/or with Quercus canariensis).

Cedrus atlantica, known as a noble species, representing an important ecological and economic
value in Morocco, covers an area of over 130,000 ha distributed in Morocco (Rif, Middle Atlas, and
northeast of the High Atlas) and Algeria [31]. It grows in cool, moist environments at elevations
between 1300 and 2600 m in the Rif, Middle Atlas, and High Atlas mountains [31–33], where the
amount of annual rainfall ranges from 500 to 2000 mm and the minimum temperature of the coldest
month is between −8 ◦C and −1 ◦C [31,34]. Whereas evergreen oak forest constitutes the natural
vegetation under semi-arid climates [35].

Still, according to the same plan, the Azrou forest is composed of all types of substrates (limestone,
dolomite, and basalt) combined with a wide variety of soils ranging from deep soils to shallow
rocky soils.
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2.2. Data Description

A Sentinel-2A image acquired on 28 August 2015 was used in this study. It consists of 13 spectral
bands from the visible to the SWIR; of which 4 bands have a resolution of 10 m, 6 bands have a
resolution of 20 m and 3 bands have a resolution of 60 m.
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2.3. Pre-Processing Stage

The pre-processing of the Sentinel 2A image was performed under QGIS software, through
the Semi-Automatic Classification Plugin (SCP) interface, developed by Luca Congedo [36].
The pre-processing stage consists of several steps, from the image download to the final image
(map). The first step consists of converting the digital number (DN) to the top of atmospheric (TOA)
reflectance, followed by the atmospheric correction, where the dark object subtraction (DOS) was
considered. The DOS method assumes that atmospheric path radiance is the radiance value measured
by the satellite for the darkest object within the image, usually clear water bodies or areas in complete
shadow [37]. This model corrects only the atmospheric additive scattering component.

2.4. Supervised Classification

The SAM classification algorithm was used in this study. As a supervised classification technique,
it is highly dependent on the identification of the training areas obtained from the observation of a
field spectrometer, or are taken directly from a remote sensing image with sufficient field data, or
from spectral libraries [30,38]. Developed by Kruse et al. [30], SAM determines rapidly and easily the
spectral similarity between the image spectra to reference reflectance spectra (Figure 2) [38–41] and
it is based on the number of bands used in the processed image [42–44]. Small angle values indicate
greater similarity between pixel and reference spectra [45].

This method is relatively insensitive to changes in illumination in the scene [46]. Mathematically,
SAM can be expressed by Equation (1)

α = cos−1 ∑ XY√
∑(X)2 ∑(Y)2

(1)

where α is the angle formed between the reference spectrum and image spectrum; X is the image
spectrum; and Y is the reference spectrum. Each pixel will be assigned to the class according to the
lowest spectral angle value pixels are similar. Pixels with a measurement greater than the specified
maximum divergence threshold are not classified [47].
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3. Results

The SAM classification algorithm was applied to obtain a land cover classification map (Figure 3)
from the high spatial resolution satellite image Sentinel-2A considered in this work. Figure 4 shows
the spectral responses of the different classes selected extracted directly from the Sentinel-2A image.
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In this study, 7419 pixels were considered as bare soil, 29,147 pixels as cedar forest, and
33,668 pixels as holm oak. The separability scores of the ROIs were calculated using the
Jeffries–Matusita (J–M) distance between the ROIs. Therefore, all ROIs used in this study have
good separability and are reasonable for use as training samples, as shown in Table 1.

Table 1. ROI pairs’ separability (Jeffries–Matusita distance).

ROI Pairs Separability

Holm oak/cedar forest 1.71597
Holm oak/bare soil 1.99647

Cedar forest/bare soil 1.97217
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The output classes considered in the classification process: holm oak, cedar forest, bare soil, and
others. Of these, cedar forest makes up 11% (2747 ha) of the area; this mainly occurs in the northeast
and southwest of the study area. However, holm oak makes up approximately 27% (6603 ha) of the
land cover; this is represented throughout the region. Bare soil class accounts for approximately 24%
of the Azrou forest and the unclassified class presents 38% of the land cover in the area.

Accuracy assessment is an important step in the classification process. The main objective is to
determine how effectively pixels were grouped into the correct classes. A confusion matrix is a square
array of numbers set out in rows and columns that express the number of sample units assigned to
a particular category relative to the actual category as verified by ground truth information usually
collected from ground visits, or aerial photographs and satellite images, or a reference dataset.

The kappa statistic gives a measure that indicates whether the confusion matrix is significantly
different from a random result. Kappa analysis can also be used to compare different matrices from
different classifiers and to determine whether one result is significantly better than another [48].

Classification accuracy statistics are summarized in Table 2. The overall accuracy (OA) of
classification was 99.72% and the kappa statistics was 0.99.

Table 2. Error matrix for SAM classification result in the study area.

Class
Ground Truth (Pixels)

Unclassified Bare Soil Holm Oak Cedar Forest Total

Unclassified 6,790,570 1869 1850 1264 6,795,584
Bare soil 2025 572,878 2250 2203 579,331

Holm oak 1775 2150 654,079 2194 660,273
Cedar forest 1314 2103 2194 269,005 274,666

Total 6,795,684 579,000 660,360 274,679 8,309,854

Class
Ground Truth (Percent)

Unclassified Bare Soil Holm Oak Cedar Forest Total

Unclassified 99.92% 0.32% 0.28% 0.46% 81.78%
Bare soil 0.03% 98.94% 0.34% 0.80% 6.97%

Holm oak 0.03% 0.37% 99.05% 0.80% 7.95%
Cedar forest 0.02% 0.36% 0.33% 97.93% 3.31%

Total 100.00% 100.00% 100.00% 100.00% 100.00%

Class
Ground Truth (Percent)

Commission Omission Producer’s
Accuracy

User’s
Accuracy

Unclassified 0.07% 0.08% 99.92% 99.93%
Bare soil 1.12% 1.06% 98.94% 98.89%

Holm oak 0.93% 0.95% 99.05% 99.06%
Cedar forest 2.04% 2.06% 97.93% 97.94%

A confusion matrix (Table 2) reveals that the forest classes were mapped with high accuracy.
8,286,532 out of 8,309,854 pixels were correctly classified. It further shows that the overall accuracy
(99.72%) and individual class accuracies are encouraging. The commission and omission errors of the
four classes are reported in Table 2 (in percent). The unclassified (others) class was classified with
commission and omission errors of 0.07% and 0.08%, respectively. For the bare soil class, commission,
and omission errors are 1.12% and 1.06%, respectively. For the holm oak class commission and omission
errors are 0.93% and 0.95%, respectively, with most of the commission (2.04%) and omission (2.06%)
occurring with the cedar forest class.

According to studies carried out in 2007 by the High Commission for Water and Forests and the
fight against desertification [49], pure cedar stands occupy an area of 1497.41 ha, i.e., approximately
8.41% of the total forest area, and pure oak stands cover an area of 4419.77 ha, i.e., approximately
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24.82% of the total area of the forest. The “other” section, which includes secondary species, represents
a total area of 4392.45 ha, i.e., approximately 24.67% of the total area of the forest.

Comparing the present land cover SAM classification map to the study realized by the High
Commission for Water, Forests, and for Combating Desertification in 2007, they also found the same
results regarding the land cover map with similarity in the number of hectares for each class.

Our results and adopted method indicate that a SAM classification is a valuable and good method
to map and classify forest regions. Moreover, our methodology represents a powerful step because the
use of SAM for this focus with Sentinel-2A has not yet been fully explored and has not been tested
until now in this study area.

In previous research, SAM has been successfully used [50–53]. Chikhaloui et al. [50] explains
that using SAM sometimes mixed the slightly- and the moderately-degraded soils into homogeneous
regions because of the spectral similarity approach of this method [54]. Additionally, this confusion
can be due to the use of only one angular threshold (0.20 rad) for the different classes [50].

The results obtained by Matthew et al. [55] showed that the spectral angle mapper had poor
performance (<51% OA) in comparison to linear discriminant analysis (LDA) and maximum likelihood
(ML) classifiers for tropical rain forest trees. Similar results are found by Dhaval et al. [56].

Petropoulos et al. [57] found that the object-based classification outperformed the SAM by 7.91%
OA for mapping land use/cover in the Mediterranean region. However, they noticed the required
level of expertise and time in its implementation, as well as it being more expansive, in comparison
to SAM.

4. Conclusions

The current study explored the potential of the SAM classification for mapping land cover in the
Azrou forest ecosystem. The data used in this work are free and the software chosen for processing
the data is open source, which allows other potential users to apply the same data and the same
classification techniques to other locations. The results obtained from the application of the proposed
method showed that the study area is mainly covered by four classes (holm oak, cedar forest, bare soil,
and others—unclassified); they represent, respectively, 27, 11, 24, and 38% in the area of study. The OA
of classification was estimated to be 99.72%. The results of this study show that the combination of
Sentinel-2A data and SAM classification techniques may provide an inexpensive, easily implemented
alternative to expensive, sample-based National Forest Inventories. Moreover, the results of this
research, combined with other source data (e.g., field data) could be used in order to investigate the
forest cover lost in the Mediterranean area.
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